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ABSTRACT 

The red palm weevil (RPW), Rhynchophorus 
ferrugineus (Olivier) (Coleoptera: Curculionidae) is a 
highly destructive pest of date palms, Phoenix 
dactylifera in several countries. The RPW larvae bore 
deep into palm crowns, trunks and offshoots, 
concealed from visual inspection until the palms are 
nearly dead. Traded palm trees are intensively 
transported between and within countries, spreading 
the pest worldwide. Consequently, an urgent need 
exists to identify and monitor concealed RPW larvae. 
Monitoring of this pest is generally error prone. 
Alternately, radiometry is a reliable technique for rapid 
and non-destructive assessment of plant health. The 
purpose of this research was to develop a 
mathematical method to automatically detect infested 
palm plant with RPW. A study was conducted to 
characterize reflectance spectra of palm plants with 
known red palm weevil infestation levels (grade-0 is 
healthy and grade-2 is severe), and seek to identify 
specific narrow wavelengths sensitive to RPW damage. 
Reflectance measurements were made in the spectral 
range of 350–2500 nm using a hyperspectral 
radiometer. Reflectance sensitivity analysis of the 
hyperspectral data to RPW damage also determined. 
Results of this study could suggest potential usage of 
remote sensing in monitoring spatial distribution of the 
RPW, and thereby enable effective planning and 
implementation of site-specific pest management 
practices. The study shows that it is feasible to detect 
RPW infestation using the hyperspectral data and 
recognize its level, which could be utilized to monitor 
trade and predictions. 

 

 INTRODUCTION 
A red palm weevil, Rhynchophorus ferrugineus (RPW), 
is a key pest of horticultural and ornamental palm 
species in Asia, the Middle East and the Mediterranean 

region. The RPW is currently spreading in 
Mediterranean European countries, endangering 
picturesque landscapes that are very attractive to 
tourists (Soroker et al., 2005, 2006 and Khalid, 2007). 
The female RPW lays eggs in injuries in the trunks of 
established trees, at the base of the palm leaves, at 
tree crowns and adjacent to offshoots. The RPW larvae 
bore deep into palm crowns, trunks, and offshoots, 
generally concealed from visual inspection until the 
palms are nearly dead. Several weevil generations may 
develop within a single tree. Infested trees suffer from 
reduced productivity. Heavy infestations often result in 
collapsed trees and thus, total loss of crops (Blumberg 
et al., 2001). Young palm trees (and in the case of date 
palms, their offshoots) are intensively traded and 
transported between and within countries, therefore 
the pest is spread worldwide (Giblin-Davis, 2001).  
Quick predictions and control timing act as a valuable 
tools used in an integrated control program for 
managing Pests in Egypt also the early prediction of 
insects to help the farmers to avoid heavy sprays of 
pesticides and take the necessary actions to restrict 
dangerous infestations (Yones et al., 2012). 
Remote sensing is the science and art of obtaining 
information about an object, area, or phenomenon 
through the analysis of data acquired by a device that 
is not in contact with the object under investigation 
(Lillesand et al., 2004). The advancements of sensor 
technology and growing operational deployment of 
ground-based, airborne and space-borne instruments 
greatly enhance the capabilities for routinely acquiring 
hyperspectral data and potentially quantifying plant 
pigments over a wide range of spatial and spectral 
scales (Blackburn, 2007). The use of remote sensing for 
detection of crop pests and diseases is based on the 
assumption that stresses induced by them interferes 
with photosynthesis and physical structure of the 
plant, and affects the absorption of light energy, thus 
altering the reflectance characteristics of the plants 
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(Hatfield and Pinter, 1993). Recent developments in 
optical technology have made it possible to 
differentiate diseased and healthy crops, and thus the 
prospect of automatically measuring the spatial 
distribution of crop diseases and insect pests. 
Spectroscopic and imaging techniques could be 
integrated with an autonomous agricultural vehicle 
that can provide information on early detection of 
disease and spatial distribution, thereby provide 
spatially selective sprays for pesticide application 
(West et al., 2003). Remote sensing can create geo-
referenced stratified maps of fields with pest 
abundance and damage without a large number of 
samples and provide spatial approaches for pest 
control (Willers et al., 2005; Voss et al., 2010; 
Karimzadeh et al., 2011; Dammer and Adamek, 2012; 
Mirik et al., 2012). At the same time, hyperspectral 
remote sensing could be used to identify the spectral 
signature of each object. Spectral signature is the 
specific combination of reflected and absorbed 
electromagnetic radiation at varying wavelengths 
which can uniquely identify an object (Aboelghar and 
Abdel Wahab, 2013). 

The main objective was to identify the best spectral 
zone as the first step and the optimal waveband as the 
second step to discriminate between date palms 
(healthy, moderate and severely infected) and the 
palm offshoots (healthy and infected), for early 
prediction of pest infestation and helping for 
encourage the integrated pest management system. 

1. STUDY AREA 

The study Area covers an area of about 14.961.7 m² in 
the North part of Nile Wadi and the Middle part of 
Egypt in the Eastern flood plain. It is located in the 
southern part of Giza governorate Figure (1). It is 
bordered from the north by El Saff and Helwan City 
and Masjid Mousa and El Korimaate from the South, 
and the river Nile from the east and El Mazaa Gabel 
and Eastern desert From the East. It’s located between 
latitudes 29º 22' 41.804" and 29º 22' 34.34" North and 
between longitudes 31º 15' 13.11" and 31º 15" 15.249" 
East. The climatic is arid to semi arid reflecting the 
typical climate of the Nile Delta, The topography of the 
area is nearly flat except for the areas occupied by 
Vertic Torrifluvents.  

 

Figure1: Location of the study area (Giza governorate). 

2. MATERIAL AND METHODS 

The methodology of this work focused on field 
hyperspectral measurements and statistical analysis for 
the output measurements in order to choose the 
optimal spectral and then the optimal waveband/s 
inside each spectral zone that can be used to zone to 
detect infested palm plant with RPW. As the final 
objective of this work is presenting information that 
could be used to increase the accuracy and 
performance of the existing remote sensing software’s 
in identify the different grades in the palm infestation. 
The full description of the used methodology is 
explained in the following subsections.  

2.1. Field hyper spectral measurements 

Analytical field spectroradiometer (ASD Field Spec) was 
used to measure the reflection of the different date 
palms under investigation. Data were collected on 
cloudless days from 10 am clock to 2 pm clock in order 
to minimize external effects from the atmospheric 
conditions and changes in solar position. The average 
of twenty leaves along the study area for each palm 
was calculated to be used in the study. Measurements 
were carried out in a full optical spectral range (Visible 
– Near Infrared – Short Wave Infrared) starting from 
350 nm to 2500 nm with 1 nm interval output data. 
The sampling interval is 1.4 nm at the spectral range 
(350-1050 nm) while it is 2 nm at the spectral range 
(1000-2500 nm). These are the intervals which the 
device is capturing the reflectance. The device 
automatically performs an interpolation for the data 
and gives the final data output with (1 nm) interval for 
the all spectrum range (350-2500 nm). The spectrum 
characteristics of the device are shown in Table 1. The 
protocol used for the collection of spectral data is 
based on measuring radiance from a Spectralon® 
panel. A designed probe was attached to the 
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instrument’s fiber-optic cable to be used to ensure 
standardized environmental conditions for reflectance 
measurement. The fiber-optic cable provides the 
flexibility to adapt the instrument to a wide range of 
applications. Bare foreoptic 25 degrees used for 
outdoor measurements resulting circular field of view 
with 3 cm diameter as measurements were taken at 5 
cm height in nadir position (90 degrees) over the 
measured plants. In the current study, the 
measurements were performed by holding the pistol 
grip by hand. As recommended in the instructions of 
using the device, the Spectralon® was tilted directly 
towards the sun during optimization. Data were 
collected on cloudless days from 10 am clock to 2 pm 
clock in order to minimize external effects from the 
atmospheric conditions and changes in solar position. 
Immediately after the white standard radiance 
measurement, five spectra of the canopy were 
obtained. Each one of them is the average of 20 
reading. All of the measurements were made with the 
sensor located directly over the center of the canopy. 
The mean of the five spectra was then determined to 
provide a single spectral value. 

 
Table 1: The ASD Field Spec 3 Specifications 
 

2.2 One Way ANOVA and Tukey’s HSD Post Hoc 
Analysis. 

Spectral zones that represent the atmospheric 
windows (portions of the electromagnetic reflectance 
that include data noise because of the relative air 
humidity) were removed. Spectral pattern of each 
measured sample was identified. Generally, spectral 
reflectance could be divided into six different spectral 
portions as follows: blue (350 - 440 nm), green (450 - 
540 nm), red (550 - 750 nm), NIR (760 - 1000 nm), 
SWIR I (1010–1775 nm) and SWIR II (2055–2315 nm). 

 

2.2.1: Comparing Standard Deviations from Several 
Populations  

Analysis of variance (ANOVA) methods are presented 
for comparing means from several populations or 
processes. While similar methods are occasionally used 
for comparing several standard deviations, often using 
the natural logarithm of sample variances as the 
response variable, they are not a main focal point of 
this work. There are also a number of alternative 
procedures that are not based on ANOVA methods 
that can be used to com- pare standard deviations. 
Two of these are described be- low. Both are highly 
sensitive to departures from the assumption of 
normality; consequently, they should be used only 
after verification that the assumption of normally 
distributed errors is reasonable. When using ANOVA 
models with data from designed experiments, a 
valuable assessment of the assumption of constant 
standard deviations across k factor-level combinations 
is given by the Fmax test The Fmax test is used to test the 
hypotheses (Mason et al., 2003) (Equation (1)). 

                                               (1) 

2.2.2: Multiple Comparisons  

The F-statistics in an ANOVA table provide the primary 
source of information on statistically significant factor 
effects. However, after an F-test in an ANOVA table has 
shown significance, an experiment usually desires to 
conduct further analyses to determine which pairs or 
groups of means are significantly different from one 
another (Mason et al., 2003).  

2.2.3: Tukey’s Significant Difference Procedure 

Tukey’s procedure controls the experiment wise error 
rate for multiple comparisons when all averages are 
based on the same number of observations. The stated 
experiment wise error rate is very close to the correct 
value even when the sample sizes are not equal. The 
technique is similar to Fisher’s LSD procedure. It differs 
in that the critical value used in the TSD formula is the 
upper 100α% point for the difference between the 
largest and smallest of k averages. This difference is the 
range of the k averages, and the critical point is 
obtained from the distribution of the range statistic, 
not from the t-distribution (Equation (2)).  

2.2.4: Two averages and, based on and observations 
respectively, are significantly different if: 

 

Spectral Range 

 

350-2500 nm 

 

Spectral Resolution 

 

3 nm : 700 nm 

8.5 nm : 1400 nm 

6.5 nm : 2100 nm 

Sampling Interval 

 

1.4 nm : 350-1050 nm 

2 nm : 1000-2500 nm 
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Where  

                                    (2) 

2.3Linear Discriminate Analysis  

Linear Discriminate Analysis (LDA) is a method to 
discriminate between two or more groups of samples. 
The groups to be discriminated can be defined either 
naturally by the problem under investigation, or by 
some preceding analysis, such as a cluster analysis. The 
number of groups is not restricted to two, although the 
discrimination between two groups is the most 
common approach. Linear Discrimination Analysis 
(LDA) is a commonly used technique for data 
classification. LDA approach is explained by Axler, 
1995. It easily handles the case where the within-class 
frequencies are unequal and their performance has 
been examined on randomly generated test data. This 
method maximizes the ratio of between-class variance 
to the within-class variance in any particular data set 
thereby guaranteeing maximal separation. LDA doesn’t 
change the location but only tries to provide more class 
separation and draw a decision region between the 
given classes. This method also helps to better 
understand the distribution of the feature data. In the 
current study, Class-independent transformation type 
of LDA was performed. This approach involves 
maximizing the ratio of overall variance to within class 
variance. It uses only one optimizing criterion to 
transform the data sets and hence all data points 
irrespective of their class identity are transformed 
using this transform. In this type of LDA, each class is 
considered as a separate class against other classes. In 
LDA, within-class and between class scatter are used to 
formulate criteria for class separation. Within-class 
scatter is the expected covariance of each of the 
classes. The scatter measures are computed using 
Equations (3) and (4). 

 

)(cov j

j

PjSw                                                   (3) 

Therefore, for the two-class problem, 

21 cov5.0cov5.0 Sw                                   (4) 

All the covariance matrices are symmetric. Let and be 
the covariance of set 1 and set 2 respectively. 
Covariance matrix is computed using the following 
equation (5). 
 

  T
jjjj xxj  cov                                   (5) 

Then, the between-class scatter is computes using the 
following equation (6). 

 

 
j

T

jjSb )()( 33                             (6) 

Sb can be thought of as the covariance of data set 

whose members are the mean vectors of each class. As 
defined earlier, the optimizing criterion in LDA is the 
ratio of between-class scatter to the within-class 
scatter. The solution obtained by maximizing this 
criterion defines the axes of the transformed space. As 
LDA is a class independent type in this study, the 
optimizing criterion is computed as equation (7) 

 Sbswinvcriterion  )(                                          (7) 

Finally, transforming the entire data set to one axis 
provides definite boundaries to classify the data. The 
decision region in the transformed space is a solid line 
separating the transformed data sets thus equation 
(8)

TT setdataspectransformsettransforme ___ 

(8)  

This analysis was carried out twice to discriminate 
between Healthy, infected and severely infected palms 
and again healthy and infected palm offshoots. 

 

3. RESULTS AND DISCUSSION 

Spectral reflectance pattern for the three date palms 
with its different degrees of infestation is shown in 
Figure 2. Reflectance pattern showed the same trend 
for the three palms; however, reflectance of the 
Healthy palm (grade 0) was higher than reflectance of 
the moderately infected palm (grade1) while the 
reflectance of severely infected palm (grade 2) is the 
lowest at the whole spectrum. Comparing the 
reflectance in the different spectral zones for the three 
palms showed that the highest spectral reflectance was 
in infrared spectral zone (700–1300 nm), relatively low 
reflectance in the spectral zone (1450–1800 nm) while 
the lowest reflectance was found in the spectral zone 
(1950-2300 nm). In case of palm offshoots the spectral 
reflectance pattern as shown in Figure 3 showed the 
same trend and also the spectral reflectance of Healthy 
offshoots was higher than the reflectance of infected 
ones. 



 

______________________________________________________________________________ 

______________________________________________________________________________ 
Page 20                                                                    International Journal of Geosciences and Geomatics, Vol. 2, Issue 2, 2014,ISSN:2052-5591 
 

 

Figure 2: The Spectral Reflectance Pattern for Palms with different 
Grade of infestation (healthy, moderate and severely 

infected).  

 

Figure 3: The Spectral Reflectance Pattern for Healthy and infected 
Palm Offshoots. 

The reason of this might be due to the effect of pest 
infestation to the date palm which make loses to the 
essential elements in the palm leaves. The results of 
Tukey’s HSD test showed the significance of the 
spectral difference between Healthy and infected palm 
along the six spectral zones attached with the general 
mean of the reflectance for them, the mean of the 
reflectance for each one, the maximum and minimum 
reflectance values for each palm. The significance of 
the difference between healthy, moderately and 
severely infected palm also appears in each figure. 
Tukey’s HSD test showed that only Red spectral zone is 
the best to differentiate between healthy, moderately 
and severely infected palms followed by blue, green, 
NIR and SWIR-2 spectral zones that showed relatively 
high potentiality to differentiate between them. At the 
same time, SWIR-1 spectral zone did not show 
significant difference in the reflectance of Healthy, 
moderately and severely infected palms as shown in 
Figure 4. 

For the discrimination between healthy and infected 
palm offshoots, the six spectral zones were sufficient to 
classify the two palms as explained in Figure 3. SWIR -2 
and blue showed the best result to discriminate 
between healthy and infected palm offshoots. Red, 
green, NIR and SWIR-2 spectral zones shows 

acceptable results, but SWIR-1 spectral zone did not 
show remarkable significant difference as shown in 
Figure 5. 

The process of this work included applying two 
statistical analyses on the spectral measurements of 
the field spectroradiometer. The main objective was to 
identify the best spectral zone as the first step and the 
optimal waveband as the second step to discriminate 
between date palms (healthy, moderate and severely 
infected) and the palm offshoots (healthy and 
infected). The final objective is to improve the 
performance of the existing remote sensing software’s 
in early detection of palm infestation through machine 
learning process. Comparing the spectral reflectance 
pattern for the three date palms (healthy, moderate 
and severely infected) and palm offshoots (healthy and 
infected) showed high spectral similarity between 
them. 

 
 

 
 

  

 

Figure 4: ANOVA and Tukey’s HSD analysis to differentiate between 
palm (healthy, moderate and severely infected) and the palm 
offfshots (healthy and infected). 
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Figure 5: ANOVA and Tukey’s HSD analysis to differentiate between 
the palm offshoots (healthy and infected). 

The results of the statistical analysis explained that red 
spectral zone is the best spectral zones to differentiate 
between date palms (healthy, moderate and severely 
infected) while blue and SWIR-2 spectral zones are the 
best spectral zones to differentiate between palm 
offshoots (healthy and infected) as show in figure 4 
and 5. Only one specific waveband zone, (720:724 nm) 
in the case of Severely Infected Palm, was found the 
best to isolate from Healthy and moderately infected 
palm. At the same time, three spectral wavebands 
were sufficient to isolate Moderately infected palm 
(529:589, 693:695, 693:695 nm) while two spectral 
wavebands were sufficient to isolate Healthy Palm 
(514:664, 684:1344 nm). In case of palm offshoots 
there is two spectral wavebands were sufficient to 
isolate infected offshoots with remarkable two 
waveband for infection is  (1551:1779 , 2051:2334 nm) 
from Healthy offshoots (720:724, 1566:1778 nm) as 
illustrated in table 2. All measurements were carried 
out on Siwa date palms of the same age, 15 years old. 
Although the moderately infected samples were 
characterized through three unique spectral zones, this 
result is quite important as remote sensing data could 
be used for the early warning of moderately and 
slightly infected palms. This is considered the key point 
used in integrated pest management system.  
  

 
Optimal wavelength 

zones (nm)  

Healthy Palm   514-664   

 684-1344 

Moderately Infected 
Palm      

529-589     

 693-695     

 1333-1335 

Severely Infected 720-724 

Palm 

Healthy Offshoots   715-720      

 1566-1778 

Infected Offshoots 350-718     

 1551-1779     

 2051-2334 

Table 2: The optimal waveband to differentiate between (healthy, 
moderately and severely infected) date palms or offshoots. 

4. CONCLUSION  

Spectral libraries collected in the field are common 
data sets exploited by the hyperspectral remote 
sensing community. Such data support the analysis of 
airborne and space borne hyperspectral imagery, the 
characterization of natural material, and the 
development of algorithms for information extraction 
(Rivard et al., 2008). So the integration of remote 
sensing and GIS techniques for the integrated pest 
management programs is essential. Field hyper 
spectral measurements were used to discriminate 
between date palms (healthy, moderate and severely 
infected) and palm offshoots (healthy and infected). 
Two steps of statistical analysis showed the best 
spectral zone and the optimal wavebands to 
discriminate between them. Tukey’s HSD test indicated 
that SWIR-2 spectral zone was the best while SWIR-1 
was the worst for the discrimination between date 
palms (healthy, moderate and severely infected) and 
palm offshoots (healthy and infected). The other 
spectral zones showed also acceptable results for 
differentiation. Linear discrimination analysis showed 
specific wavebands to identify infected palm dates 
from the healthy one. It was found that the only one 
specific waveband zone, (720:724 nm) in the case of 
Severely Infected Palm, was found the best to isolate 
from Healthy and moderately infected palm. At the 
same time, three spectral wavebands were sufficient to 
isolate Moderately infected palm (529:589, 693:695, 
693:695 nm) this result is quite important as remote 
sensing data could be used for the early warning of 
moderately and slightly infected palm, this is 
considered the key point used in integrated pest 
management system, while there are two spectral 
wavebands were sufficient to isolate Healthy Palm 
(514:664, 684:1344 nm). In case of palm offshoots 
there is two spectral wavebands were sufficient to 
isolate infected offshoots is (1551:1779, 2051:2334 
nm) from Healthy offshoots (720:724, 1566:1778 nm).  
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